

DHANALAKSHMI SRINIVASAN

INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University) NH - 45, Trichy - Chennai Trunk Road, SAMAYAPURAM,TRICHY - 621 112. E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

COURSE PLAN

Subject code: EC8451

Subject Name: ELECTROMAGNETIC FIELDS

Branch/Year/Sem/Section: B.E ECE/II/IV

Batch: 2018 - 2022

Staff Name: G.EZHILARASAN (AP/EEE)

Academic year:2019-2020

COURSE OBJECTIVE:

To impart knowledge on the following Topics

- 1. To gain conceptual and basic mathematical understanding of electric and magnetic fields in free space and in materials
- 2. To understand the coupling between electric and magnetic fields through Faraday's law, displacement current and Maxwell's equations
- 3. To understand wave propagation in lossless and in lossy media
- 4. To be able to solve problems based on the above concepts

TEXT BOOK:

T1. D.K. Cheng, Field and wave electromagnetics, 2nd ed., Pearson (India), 1989 (UNIT I, II,III IV,V) **T2.**W.H.Hayt and J.A. Buck, Engineering electrmagnetics, 7th ed., McGraw-Hill (India), 2006(UNIT I-V)

REFERENCES:

R1.R. D.J. Griffiths, Introduction to electrodynamics, 4th ed., Pearson (India), 2013

R2.B.M. Notaros, Electromagnetics, Pearson: New Jersey, 2011

R3. M.N.O. Sadiku and S.V. Kulkarni, Principles of electromagnetics, 6th ed., Oxford (Asian Edition), 2015

ADDITIONAL REFERENCES:

- **AR1.** E.C. Jordan & K.G.Balmain Electromagnetic Waves and Radiating Systems", Pearson Education/PHI 4th edition 2006
- AR2. G.S.N.Raju, Electromagnetic Field Theory & Transmission Lines, Pearson Edition, 2006

TEACHING METHODOLOGIES:

- ► BB BLACK BOARD
- > VIDEO VIDEO TUTORIAL
- ➢ PPT POWER POINT PRESENTATION

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY (Approved by AICTE, New Delhi & Affiliated to Anna University)

NH - 45, Trichy - Chennai Trunk Road, SAMAYAPURAM,TRICHY - 621 112. E.mail:dsit2011@gmail.com Website:www.dsit.ac.in

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SYLLABUS

EC8451

ELECTROMAGNETIC FIELDS L P T C

4004

12

12

12

12

12

UNIT I INTRODUCTION

Electromagnetic model, Units and constants, Review of vector algebra, Rectangular, cylindrical and spherical field, Divergence theorem, Curl of vector field, Stoke's theorem, Null identities, Helmholtz's theorem coordinate systems, Line, surface & volume integrals, Gradient of scalar field, Divergence of vector

UNIT II ELECTROSTATICS

Electric field, Coulomb's law, Gauss's law and applications, Electric potential, Conductors in static electric field, Dielectrics in static electric field, Electric flux density and dielectric constant, Boundary conditions, Capacitance, Parallel, cylindrical and spherical capacitors, Electrostatic energy, Poisson's and Laplace's equations, Uniqueness of electrostatic solutions, Current density and Ohm's law, Electromotive force and Kirchhoff's voltage law, Equation of continuity and Kirchhoff's current law

UNIT III MAGNETOSTATICS

Lorentz force equation, Law of no magnetic monopoles, Ampere's law, Vector magnetic potential, Biot- Savart law and applications, Magnetic field intensity and idea of relative permeability, Magnetic circuits, Behaviour of magnetic materials, Boundary conditions, Inductance and inductors, Magnetic energy, Magnetic forces and torques

UNIT IV TIME VARYING FIELDS AND MAXWELL'S EQUATIONS

Faraday's law, Displacement current and Maxwell-Ampere law, Maxwell's equations, Potential functions, Electromagnetic boundary conditions, Wave equations and solutions, Time-harmonic fields

UNIT V PLANE ELECTROMAGNETIC WAVES

Plane waves in lossless media, Plane waves in lossy media (low-loss dielectrics and good conductors), Group velocity, Electromagnetic power flow and Poynting vector, Normal incidence at a plane conducting boundary, Normal incidence at a plane dielectric boundary

TOTAL : 60 PERIODS

Topic No.	Topic Name	Books for reference	Page No	Teaching Methodology	No of periods required	Cumulative No. of periods		
UNIT	I INTRODUCTION			(12)				
1.	 Introduction Electromagnetic model, Units and constants 	T1	19-24	Black Board	1	1		
2.	Introduction to VectorsVector Algebra●VectorAdditionalandSubtraction●Multiplication of a Scalar and a Vector●Properties of vectors.	T1 T2 AR1	24-26 2-4 2-9	Black Board	1	2		
3.	Vector CalculusGradientDivergenceCurl of vector	T1 AR1	27-28 10-13	Black Board	1	3		
4.	IntroductiontoCo-ordinateSystemRectangularorCartesianCo-ordinateOrdinateSystem	T1 T2 AR1	36-40 4-5 13-15	Video Tutorial	1	4		
5.	Cylindrical co-ordinate system	T1 T2	41-46 14-19	Video Tutorial	1	5		
6.	Spherical co-ordinate system	T1 T2	47-53 19-22	Video Tutorial	1	6		
7.	Introduction to line, surface and volume integrals	T1	53-58	Black Board	1	7		
8.	Divergence theoremStatementandexpression	T1 T2	66-70 82-85	Black Board	1	8		
9.	Stokes theoremStatementandexpression	T1	70-77	Black Board	1	9		
10.	Null identities,	T1	77-79	Black Board		10		
11.	Helmholtz's theorem	T1	79-81	Black Board		11		
12.	Problems related to Co-ordinate systems	T1	40-61	Black Board		12		

• Analyze the things in Three dimensional view and direction of field.

UNIT	II ELECTROSTATICS				(12)	
13.	IntroductiontoElectricfield,Coulomb's lawStatementVector form of coulomb's law	T1 T2 AR2	88-103 27-43 82-92	Black Board	1	13
14.	 <u>Gauss law</u> Statement & Proof of Gauss law Applications Gauss divergence theorem 	T1 T2	103-108 55-64	Black Board	1	14
15.	 Absolute Electric scalar potential and potential difference Relationship between potential and electric field Potential due to infinite uniformly charged line 	T1 T2 AR2 AR1	108-116 87-101 107-113 30-35	Black Board	1	15
16.	Conductors and dielectric fieldCurrent & Current density	T1 T2	116-121 112-114	Black Board	1	16
17.	 <u>Electric flux density and dielectric</u> <u>constant</u> Statement & Expression 	T1 T2	125-132 13-143	Black Board	1	17
18.	 Boundary conditions Boundary conditions between conductor and free space Normal component and Tangential component of a Boundary 	T1 T2	132-137 143-148	Black Board	1	18
19.	 <u>Capacitance</u> Definition of Capacitance Calculation of Capacitance of parallel plate 	T1	137-140	РРТ	1	19
20.	 Calculation of Capacitance of coaxial cable Calculation of Capacitance of spherical capacitance 	T1 T2	140-149 149-159	Black Board	1	20
21.	Electrostatic energy	T1	149-159	Black Board	1	21
22.	 Poisson's and Laplace's Equation Definition and expression Uniqueness of electrostatic solutions, Current density and Ohm's law 	T1 T2	168-221 177-188	Black Board	1	22

23.	 Electromotive force and Kirchhoff's voltage law Equation of continuity and Kirchhoff's current law 	T1 T2	221-226 116-118	Black Board	1	23
24.	Problems Related to capacitance	T1	137-149	Black Board	1	24
	NING OUTCOME e end of the unit, students should be able Analyze the electrostatic field conditio		space and cor	iducting media		
UNIT	III MAGNETOSTATICS				(12)	
25.	 Introduction Lorentz force equation Law of no magnetic monopoles Ampere's law - statement & Proof 	T1 T2	241-243 260-265	Black Board	1	25
26.	 Vector Magnetic potential Magnetic moment Magnetic scalar potential Magnetic vector potential 	T1 T2	248-250 240-290	Black Board	1	26
27.	 Biot-Savart Law Statement and Applications Magnetic field intensity due to Finite Length of Conductors carrying current I Magnetic field intensity due to infinite length of conductor carrying a current I 	T1 T2 AR2 AR1	250-255 210-121 185-189 90-92	Black Board	1	27
28.	 Magnetic field intensity on the axis of a circular loop carrying current 'I' Magnetic field intensity on the axis of a rectangular loop carrying current 	T1 T2 AR2 AR1	250-255 210-121 185-189 90-92	Video Tutorial	1	28
29.	 Magnetic flux and flux density & relative permeability Definition Magnetic flux or Gauss law in integral form, differential form Relative permeability – definition & expression 	T1 T2	256-263 212-214	Black Board	1	29

30.	 Magnetic circuit Expression Potential energy and force on magnetic materials Nature of the magnetic materials Types of magnetic materials Behavior of magnetic material 	T1 T2	267-276 284-290	Black Board	1	30
31.	 Magnetic boundary conditions Tangential component Normal component 	T1 T2	278-282 281-284	Black Board	1	31
32.	 Inductance Definition and basic expression Self and mutual inductance Inductance evaluation for toroid 	T1 T2	282-286 291-299	PPT	1	32
33.	 Inductance evaluation for solenoid Inductance evaluation for coaxial cable Inductance evaluation for transmission line 	T1 T2	286-292 291-299	Black Board	1	33
34.	Magnetic EnergyEnergy stored in magnetic field	T1 T2	293-297 290-292	Black Board	1	34
35.	 Magnetic Force Force on a moving charge, differential element Force between current elements Magnetic Torque Torque on closed circuit 	T1 T2 AR2	297-310 260-273 200-211	Black Board	1	35
36.	Problems related to Magnetic Field Intensity and Inductance	T1	250-310	Black Board	1	36
	NING OUTCOME end of the unit, students should be able Analyze the Magneto-static field cond To know the design details of the coil IV TIME VARYING FIELDS AND	itions in Fre based on th	e application		dia. (12)	
	Introduction		-		(12)	
37.	 Faraday's law for electromagnetic induction 	T1 T2 AR1	323-326 306-308 720-723	Black Board	1	37

•	Transformers equation	T1	327-330	Video	~	•
38.	 Expression for transformer 	T2	308-313	Tutorial	1	38
	induced EMF equation	AR1	720-723	rucoriui		
	Motional EMF equation	T1	327-330			
39.	 Expression for motional 	T2	308-313	Black Board	1	39
	electromotive force equation	AR1	720-723			
	Displacement Current					
40.	 Statement & Expression 	T1	330-337	Black Board	1	40
-0.	Maxwell - Ampere law	T2	317-321	DIACK DUALU	1	-10
	 Statement & Expression 					
	Maxwell's equations	T 1	227 242			
41.	 Differential form of Maxwell's 	T1 AR1	337-342 203-204	Black Board	1	41
	equations	AKI	205-204			
	Maxwell's equations	T 1	227 242			
42.	 Integral form of Maxwell's 	T1 AR1	337-342 203-204	Black Board	1	42
	equations	AKI	203-204			
43.	Potential functions	T1	342-345			10
	 Time varying potentials 	T2	321-325	Black Board	1	43
44.	Electromagnetic boundary conditions	T1	345-348	Black Board	1	44
	conditions					
	<u>Wave equation</u>Derivation of wave equation.	T1	348-350	Black Board		
45.		Т2	410-417		1	45
	- Derivation of wave equation.	AR2	285-288			
46.	Warra a maati ara Caluti an a	T1	348-350	Black Board	1	46
40.	Wave equation Solutions	T2	410-417	Бласк боаги	1	40
	Wave equation in phasor form	T1	348-350			1
47.	 Determination of α, β & η. 	T1 T2	417-423	Black Board	1	47
+/.	 Maxwell's Equations in phasor 	AR2		Бласк Боаго	1	4/
	form.	AKZ	294-295			
	Time harmonic fields					
48.	 Point form of Ampere's circuital 	T1	351-362	Black Board	1	48
40.	law	T2	389-400	DIACK DUALU	1	+0
	 Point form of Gauss law 					

Know the differential and integral form of Waves by Maxwell equations.

UNIT V PLANE ELECTROMAGNETIC WAVES

Uniform plane waves 371-378 T1 Introduction and its Properties T2 396-398 Black Board 1 49 49. Uniform plane wave in perfect AR1 116-130 dielectric. Uniform plane wave in lossy 378-380 T1 Black Board 1 50 50. dielectric. T2 398-403

(12)

51.	 Uniform plane wave in practical dielectric. 	T1 T2	380-391 404-410	Black Board	1	51
52.	Group velocity Statement and Expression		391-395	Black Board	1	52
53.	Poynting vector	T1 T2	395-398 435-436	Black Board	1	53
54.	Poynting theorem	T1 T2 AR1	398-400 436-438 162-173	Black Board	1	54
55.	 Electromagnetic power flow Average power density 	T1 T2	400-402 438-440	Black Board	1	55
56.	Poynting theorem and Power flow problems	T1	395-402	Black Board	1	56
57.	 Normal incidence at a plane conducting boundary Description Derivation 	T1 T2	402-406 450-455	Black Board	1	57
58.	Normal incidence at a planedielectric boundaryDescriptionDerivation	T1 T2	413-417 456-462	Black Board	1	58
59.	Problems based on Uniform Plane waves(Lossy and Perfect dielectric)	T1	371-395	Black Board	1	59
60.	Problems based on Uniform Plane waves(Practical dielectric)	T1	371-395	Black Board	1	60
LEAR	NING OUTCOME	I	1		1	ı

LEARNING OUTCOME

At the end of the unit, students should be able to

- Understand the propagation of Uniform plane waves.
- Calculate the Electromagnetic power flow constants by using Poynting theorem.

COURSE OUTCOME

At the end of the course, the student should be able to:

- Display an understanding of fundamental electromagnetic laws and concepts
- Write Maxwell's equations in integral, differential and phasor forms and explain their physical meaning
- Explain electromagnetic wave propagation in lossy and in lossless media
- Solve simple problems requiring estimation of electric and magnetic field quantities based on these concepts and laws

CONTENT BEYOND THE SYLLABUS

- Polarization
- Reluctance

CONTINUES INTERNAL ASSESSMENT DETAILS

ASSESMENT NUMBER	Ι	II	MODEL
TOPIC NO.(UNIT)	1-18 (1 st & 2 nd units)	19-36 (3 rd & 4 th units)	1-45 (units 1-5)

ASSIGNMENT DETAILS

ASSIGNMENT NUMBER	Ι	II	III
TOPIC NUMBER FOR REFERENCE	1-18 (1 st & 2 nd units)	19-36 (3 rd & 4 th units)	1-45 (units 1-5)
DEAD LINE			

ASSIGNMENT NUMBER	BATCH	DESCRIPTIVE QUESTIONS/TOPIC (Minimum of 8 Pages)
I	B1	 Spherical coordinate system Divergence Theorem Gauss Law and its application
II	B1	 Maxwell's equations are derived from different basic laws Electromagnetic Wave equations
III	B1	 Biot-Savart Law and its applications. Uniform plane wave in Lossy dielectric Poynting Theorem

PREPARED BY	VERIFIED BY	APPROVED BY

G.EZHILARASAN, AP/EEE

HOD

PRINCIPAL